• Français
  • English
  • Français
  • English

Fiche de : Jonas LAMPART

Département :
Interactions et Contrôle Quantiques


Fonction :

Chargé de Recherche CNRS



Localisation :

Dijon – Bâtiment Mirande – D112

I am a researcher in mathematical physics, working in the group « dynamique quantique et nonlinéaire » at the ICB.

 

Research interests

My main research interest is the mathematical description of quantum mechanics, and its connections to functional analysis, partial differential equations, geometry and topology.

I am a co-organiser of the joint working seminar of the ICB and the mathematics institutes of Dijon (IMB) and Besançon (LMB).

 

Short Bio

After obtaining the diploma in mathematics at the university of Tübingen in 2010, I  wrote my PhD thesis under the supervision Stefan Teufel.

From 2014 to 2016 I worked as a postdoc with Mathieu Lewin at the universities of Cergy-Pontoise and Paris-Dauphine.

In 2016 I obtained a position for interdisciplinary research in mathematical physics at the CNRS.

  • ANR DYRAQ on Dirac equations and relativistic quantum dynamics
  • ANR QUACO on control of quantum systems
  • I-QUINS on quantum information, within the I-SITE BFC excellence initiative

Preprints

  • V. Dorier, J.L., S. Guérin, and H.R. Jauslin: Canonical quantization for quantum plasmonics with finite nanostructures. arXiv:1810.08014, 2018.
  • J.L.: A nonrelativistic quantum field theory with point interactions in three dimensions. arxiv:1804.08295 , 2018.

 

Journal Articles

  • J.L., and J. Schmidt: On Nelson-type Hamiltonians and abstract boundary conditions. Communications in Mathematical Physics, 2019, DOI: 10.1007/s00220-019-03294-x; arxiv:1803.00872
  • S. Haag, J.L., and S.Teufel: Quantum waveguides with magnetic fields. Reviews in Mathematical Physics (accepted), 2018; arXiv:1710.0151
  • S. Haag, and J. L.: The adiabatic limit of the connection Laplacian. The Journal of Geometric Analysis, 2018, DOI: 10.1007/s12220-018-0087-2; arXiv:1705.09801
  • J. L., J. Schmidt, S. Teufel, and R. Tumulka, Particle Creation at a Point Source by Means of Interior-Boundary Conditions. Mathematical Physics Analysis and Geometry 21(2), 2018; arXiv:1703.04476
  • S. Fournais, J.L., M. Lewin, and T. Østergaard Sørensen: Coulomb potentials and Taylor expansions in Time-Dependent Density Functional Theory. Rhysical Review A 93(6), 2016; arxiv:1603.02219
  • J.L., and M. Lewin: Semi-classical Dirac vacuum polarisation in a scalar field. Annales Henri Poincaré 17(8): 1937-1954, 2016; arxiv:1506.00895
  • J.L., and M. Lewin: A many-body RAGE theorem. Communications in Mathematical Physics 340(3): 1171-1186, 2015; arXiv:1503.00496
  • J.L.: Convergence of nodal sets in the adiabatic limit. Annals of Global Analysis and Geometry 47(2): 147-166, 2015; arXiv:1405.1903
  • S. Haag, J.L., and S. Teufel: Generalised Quantum Waveguides. Annales Henri Poincaré 16(11): 2535-2568, 2015; arXiv:1402.1067
  • J.L., and S. Teufel: The adiabatic limit of Schrödinger operators on fibre bundles. Mathematische Annalen 367: 1647, 2017; arXiv:1402.0382

 

Conference Proceedings

  • J.L., A polaron model with point interactions in three dimensions. To appear in: G. Dell’Antonio, A. Michelangeli (Eds.), Mathematical Challenges in Zero Range Physics, Springer, 2018. PDF
  • J.L., Can quantum dynamics be described by the density alone? Oberwolfach Reports 13(3): 2496, 2016. PDF
  • J.L., S. Teufel: The adiabatic limit of the Laplacian on thin fibre bundles. In: D. Grieser, S. Teufel, A. Vasy (Eds.): Microlocal Methods in Mathematical Physics and Global Analysis, Birkhäuser, 2013. PDF
  • J.L., J. Wachsmuth, and S. Teufel: Effective Hamiltonians for thin Dirichlet tubes with varying cross-section. In: P. Exner (Ed.): Mathematical Results in Quantum Physics: Proceedings of the QMath11 Conference, World Scientific, 2011; arXiv:1011.3645

 

PhD Thesis: The adiabatic limit of Schrödinger operators on fibre bundles, Universität Tübingen, 2014

Diploma Thesis: The semi-classical Egorov theorem on Riemannian manifolds, Universität Tübingen, 2009

I am a researcher in mathematical physics, working in the group « dynamique quantique et nonlinéaire » at the ICB.

Research interests

My main research interest is the mathematical description of quantum mechanics, and its connections to functional analysis, partial differential equations, geometry and topology.

I am a co-organiser of the joint working seminar of the ICB and the mathematics institutes of Dijon (IMB) and Besançon (LMB).

Short Bio

After obtaining the diploma in mathematics at the university of Tübingen in 2010, I  wrote my PhD thesis under the supervision Stefan Teufel.

From 2014 to 2016 I worked as a postdoc with Mathieu Lewin at the universities of Cergy-Pontoise and Paris-Dauphine.

In 2016 I obtained a position for interdisciplinary research in mathematical physics at the CNRS.

  • ANR DYRAQ on Dirac equations and relativistic quantum dynamics
  • ANR QUACO on control of quantum systems
  • I-QUINS on quantum information, within the I-SITE BFC excellence initiative

Preprints

  • J. L.: A remark on the attainable set of the Schrödinger equation. arxiv:1904.00591, 2019.
  • V. Dorier, J.L., S. Guérin, and H.R. Jauslin: Canonical quantization for quantum plasmonics with finite nanostructures. arXiv:1810.08014, 2018.
  • J.L.: A nonrelativistic quantum field theory with point interactions in three dimensions. arxiv:1804.08295 , 2018.

Journal Articles

  • J.L., and J. Schmidt: On Nelson-type Hamiltonians and abstract boundary conditions. Communications in Mathematical Physics, 2019, DOI: 10.1007/s00220-019-03294-x; arxiv:1803.00872
  • S. Haag, J.L., and S.Teufel: Quantum waveguides with magnetic fields. Reviews in Mathematical Physics (online), 2019; DOI:10.1142/S0129055X19500259; arXiv:1710.0151
  • S. Haag, and J. L.: The adiabatic limit of the connection Laplacian. The Journal of Geometric Analysis 29(3), 2019; arXiv:1705.09801
  • J. L., J. Schmidt, S. Teufel, and R. Tumulka, Particle Creation at a Point Source by Means of Interior-Boundary Conditions. Mathematical Physics Analysis and Geometry 21(2), 2018; arXiv:1703.04476
  • S. Fournais, J.L., M. Lewin, and T. Østergaard Sørensen: Coulomb potentials and Taylor expansions in Time-Dependent Density Functional Theory. Rhysical Review A 93(6), 2016; arxiv:1603.02219
  • J.L., and M. Lewin: Semi-classical Dirac vacuum polarisation in a scalar field. Annales Henri Poincaré 17(8): 1937-1954, 2016; arxiv:1506.00895
  • J.L., and M. Lewin: A many-body RAGE theorem. Communications in Mathematical Physics 340(3): 1171-1186, 2015; arXiv:1503.00496
  • J.L.: Convergence of nodal sets in the adiabatic limit. Annals of Global Analysis and Geometry 47(2): 147-166, 2015; arXiv:1405.1903
  • S. Haag, J.L., and S. Teufel: Generalised Quantum Waveguides. Annales Henri Poincaré 16(11): 2535-2568, 2015; arXiv:1402.1067
  • J.L., and S. Teufel: The adiabatic limit of Schrödinger operators on fibre bundles. Mathematische Annalen 367: 1647, 2017; arXiv:1402.0382

Conference Proceedings

  • J.L., A polaron model with point interactions in three dimensions. To appear in: G. Dell’Antonio, A. Michelangeli (Eds.), Mathematical Challenges in Zero Range Physics, Springer, 2018. PDF
  • J.L., Can quantum dynamics be described by the density alone? Oberwolfach Reports 13(3): 2496, 2016. PDF
  • J.L., S. Teufel: The adiabatic limit of the Laplacian on thin fibre bundles. In: D. Grieser, S. Teufel, A. Vasy (Eds.): Microlocal Methods in Mathematical Physics and Global Analysis, Birkhäuser, 2013. PDF
  • J.L., J. Wachsmuth, and S. Teufel: Effective Hamiltonians for thin Dirichlet tubes with varying cross-section. In: P. Exner (Ed.): Mathematical Results in Quantum Physics: Proceedings of the QMath11 Conference, World Scientific, 2011; arXiv:1011.3645

PhD Thesis: The adiabatic limit of Schrödinger operators on fibre bundles, Universität Tübingen, 2014

Diploma Thesis: The semi-classical Egorov theorem on Riemannian manifolds, Universität Tübingen, 2009

statut_ub:
batiment:
equipe_1:
OCS
fonction_equipe_1:
Agent(e) de service
mots_cles:
adresse:
onglets:
{tab=Carrière} # {tab=Projets} # {tab=Publications} # {tab=Communications} # {tab=Enseignements} # {tab=Administration} # {/tabs}
telephone:
e-mail:
jonas.lampart@u-bourgogne.fr
site_web:
departement:
a:1:{i:0;s:36:"Interactions et Contrôle Quantiques";}
fonction:
Chargé de Recherche CNRS
localisation:
Dijon – Bâtiment Mirande – D112
texte_onglets:
[tabs] [tab title=Carrière] Tab Content 1 [/tab] [tab title=Projets] Tab Content 2 [/tab] [tab title=Communications] Tab Content 3 [/tab] [tab title=Publications] Tab Content 4 [/tab] [/tabs]
carriere:
I am a researcher in mathematical physics, working in the group "dynamique quantique et nonlinéaire" at the ICB.   Research interests My main research interest is the mathematical description of quantum mechanics, and its connections to functional analysis, partial differential equations, geometry and topology. I am a co-organiser of the joint working seminar of the ICB and the mathematics institutes of Dijon (IMB) and Besançon (LMB).   Short Bio After obtaining the diploma in mathematics at the university of Tübingen in 2010, I  wrote my PhD thesis under the supervision Stefan Teufel. From 2014 to 2016 I worked as a postdoc with Mathieu Lewin at the universities of Cergy-Pontoise and Paris-Dauphine. In 2016 I obtained a position for interdisciplinary research in mathematical physics at the CNRS.
projets:
  • ANR DYRAQ on Dirac equations and relativistic quantum dynamics
  • ANR QUACO on control of quantum systems
  • I-QUINS on quantum information, within the I-SITE BFC excellence initiative
communications:
publications:
Preprints
  • V. Dorier, J.L., S. Guérin, and H.R. Jauslin: Canonical quantization for quantum plasmonics with finite nanostructures. arXiv:1810.08014, 2018.
  • J.L.: A nonrelativistic quantum field theory with point interactions in three dimensions. arxiv:1804.08295 , 2018.
  Journal Articles
  • J.L., and J. Schmidt: On Nelson-type Hamiltonians and abstract boundary conditions. Communications in Mathematical Physics, 2019, DOI: 10.1007/s00220-019-03294-x; arxiv:1803.00872
  • S. Haag, J.L., and S.Teufel: Quantum waveguides with magnetic fields. Reviews in Mathematical Physics (accepted), 2018; arXiv:1710.0151
  • S. Haag, and J. L.: The adiabatic limit of the connection Laplacian. The Journal of Geometric Analysis, 2018, DOI: 10.1007/s12220-018-0087-2; arXiv:1705.09801
  • J. L., J. Schmidt, S. Teufel, and R. Tumulka, Particle Creation at a Point Source by Means of Interior-Boundary Conditions. Mathematical Physics Analysis and Geometry 21(2), 2018; arXiv:1703.04476
  • S. Fournais, J.L., M. Lewin, and T. Østergaard Sørensen: Coulomb potentials and Taylor expansions in Time-Dependent Density Functional Theory. Rhysical Review A 93(6), 2016; arxiv:1603.02219
  • J.L., and M. Lewin: Semi-classical Dirac vacuum polarisation in a scalar field. Annales Henri Poincaré 17(8): 1937-1954, 2016; arxiv:1506.00895
  • J.L., and M. Lewin: A many-body RAGE theorem. Communications in Mathematical Physics 340(3): 1171-1186, 2015; arXiv:1503.00496
  • J.L.: Convergence of nodal sets in the adiabatic limit. Annals of Global Analysis and Geometry 47(2): 147-166, 2015; arXiv:1405.1903
  • S. Haag, J.L., and S. Teufel: Generalised Quantum Waveguides. Annales Henri Poincaré 16(11): 2535-2568, 2015; arXiv:1402.1067
  • J.L., and S. Teufel: The adiabatic limit of Schrödinger operators on fibre bundles. Mathematische Annalen 367: 1647, 2017; arXiv:1402.0382
  Conference Proceedings
  • J.L., A polaron model with point interactions in three dimensions. To appear in: G. Dell'Antonio, A. Michelangeli (Eds.), Mathematical Challenges in Zero Range Physics, Springer, 2018. PDF
  • J.L., Can quantum dynamics be described by the density alone? Oberwolfach Reports 13(3): 2496, 2016. PDF
  • J.L., S. Teufel: The adiabatic limit of the Laplacian on thin fibre bundles. In: D. Grieser, S. Teufel, A. Vasy (Eds.): Microlocal Methods in Mathematical Physics and Global Analysis, Birkhäuser, 2013. PDF
  • J.L., J. Wachsmuth, and S. Teufel: Effective Hamiltonians for thin Dirichlet tubes with varying cross-section. In: P. Exner (Ed.): Mathematical Results in Quantum Physics: Proceedings of the QMath11 Conference, World Scientific, 2011; arXiv:1011.3645
  PhD Thesis: The adiabatic limit of Schrödinger operators on fibre bundles, Universität Tübingen, 2014 Diploma Thesis: The semi-classical Egorov theorem on Riemannian manifolds, Universität Tübingen, 2009
enseignements:
administration:
kc_data:
a:8:{i:0;s:0:"";s:4:"mode";s:2:"kc";s:3:"css";s:0:"";s:9:"max_width";s:0:"";s:7:"classes";s:0:"";s:9:"thumbnail";s:0:"";s:9:"collapsed";s:0:"";s:9:"optimized";s:0:"";}
switch:
1
kc_raw_content:

Log In

Create an account