Sheet 3

Exercise 3.1

Prove Proposition 2.5 from the lecture: Let $\|\cdot\|_1$, $\|\cdot\|_2$ be two equivalent norms on a vector sapce X, then $U \subset X$ is open for $\|\cdot\|_1$ if and only if it is open for $\|\cdot\|_2$.

Exercise 3.2

Let X be a normed space and $S \subset X$. A point $x \in X$ is called a limit point of S if there exists a sequence in $x_n \in S$, $n \in \mathbb{N}$ that converges to x. Prove that

- a) S is closed if and only if it contains all its limit points;
- b) The closure \overline{S} is the union of S and its limit points;
- c) Assume that X is complete and $Y \subset X$ a subspace. Then Y is complete if and only if Y is closed.

Homework

Exercise 3.3 (Green's function for the Laplacian)

a) Let $g : \mathbb{R} \to \mathbb{R}$ be the function given by $g(x) = \frac{1}{2} e^{-|x|}$. Show that g (more precisely the associated distribution, φ_g) is the unique solution in $\mathscr{S}'(\mathbb{R})$ to the equation

$$(1-\Delta)\varphi = \delta_0 \,,$$

by

- 1) the Fourier transform;
- 2) directly using the distributional derivative.
- b) Prove that for $f \in \mathscr{S}(\mathbb{R})$ the unique solution to the equation

$$(1 - \Delta)u = f$$

is

$$u(x) = \int g(x-y)f(y)\mathrm{d}y.$$

Remark: g is called the fundamental solution or Green's function for the equation.

Hand in on 07.02.2024 before the lecture or by 10:00 by mail to jonas.lampart@u-bourgogne.fr.