Sheet 2

Exercise 2.1 (Multiplication and convolution on \mathscr{S}')

Let $g \in \mathscr{S}(\mathbb{R}^d)$ and define the multiplication by g as a map $(M_g f)(x) := g(x)f(x)$.

- a) Show that $M'_g: \mathscr{S}'(\mathbb{R}^d) \to \mathscr{S}'(\mathbb{R}^d)$ is linear and continuous;
- b) For $\varphi \in \mathscr{S}'(\mathbb{R}^d)$ define multiplication with g by $g\varphi := M'_{\overline{g}}\varphi$ and show that

$$\mathscr{F}(g\varphi) = (2\pi)^{-d/2} \hat{g} * \hat{\varphi}_{g}$$

where * is the convolution of $\hat{g} \in \mathscr{S}(\mathbb{R}^d)$ with $\hat{\varphi} \in \mathscr{S}'(\mathbb{R}^d)$ defined in the lecture.

Exercise 2.2 (The δ' distribution)

Set for $f \in \mathscr{S}(\mathbb{R})$

$$\delta'(f) = \frac{\mathrm{d}f}{\mathrm{d}x}(0)$$

Show that δ' defines a tempered distribution.

Exercise 2.3 (The Fourier transform of complex Gaussians II) Let t > 0 and set for $\varepsilon \ge 0$

$$f_{\varepsilon}(x) := \mathrm{e}^{-(\mathrm{i}t+\varepsilon)x^2/2}.$$

- a) Show that $f_{\varepsilon} \to f_0$ in $\mathscr{S}'(\mathbb{R})$ as $\varepsilon \to 0$;
- b) Show that

$$\hat{f}_0(p) = \frac{\mathrm{e}^{\mathrm{i}\frac{p^2}{2t}}}{\sqrt{\mathrm{i}t}}.$$

Can you explain the relation to Exercise 1.4?

Hint: We know from Exercise 1.2 that for $\varepsilon > 0$

$$\hat{f}_{\varepsilon}(p) = \frac{\mathrm{e}^{-\frac{p^2}{2(\mathrm{i}t+\varepsilon)}}}{\sqrt{\mathrm{i}t+\varepsilon}}.$$

Homework

Exercise 2.4 (The delta distribution)

Define for $f \in \mathscr{S}(\mathbb{R}^d)$

$$\delta_0(f) := f(0).$$

Let $g \in L^1(\mathbb{R}^d)$ with $\int_{\mathbb{R}^d} g = 1$ and define, for $\epsilon > 0$, $g_{\epsilon}(x) := \epsilon^{-d}g(\epsilon^{-1}x)$. Then for every $\epsilon > 0$, $\varphi_{\epsilon} = \varphi_{g_{\epsilon}}$ is a regular distribution.

- a) Show that $\varphi_{\epsilon} \to \delta_0$ in $\mathscr{S}'(\mathbb{R}^d)$, as $\epsilon \to 0$;
- b) Let $\theta \in \mathscr{S}'(\mathbb{R})$ be defined by $\theta(f) := \int_{\mathbb{R}} \mathbb{1}_{[0,\infty)}(x) f(x) dx$. Prove that $\frac{\mathrm{d}}{\mathrm{d}x} \theta = \delta_0$. (Here $\frac{\mathrm{d}}{\mathrm{d}x} := (\partial^1)_{\mathscr{S}'}$ is the distributional derivative as defined in the lecture).
- c) Prove that δ_0 is not a regular distribution.

Hand in on 31.01.2024 before the lecture or by 10:00 by mail to jonas.lampart@u-bourgogne.fr.