Sheet 6

Exercise 6.1

Let \mathcal{H} be a complex Hilbert space and $A \in B(\mathcal{H})$. Show that A is self-adjoint if and only if for all $f \in \mathcal{H}$

$$\langle f, Af \rangle \in \mathbb{R}.$$

Exercise 6.2

Let, for t > 0, $T_t \in B(L^2(\mathbb{R}))$ be the solution map of the heat equation on $L^2(\mathbb{R})$,

$$(T_t f)(x) = \frac{1}{\sqrt{4\pi t}} \int_{\mathbb{R}} e^{-|x-y|^2/(4t)} f(y) \mathrm{d}y$$

Show that for all $f \in \mathcal{H}$, t > 0 we have $||T_t f|| < ||f||$, and $||T_t|| = 1$.

Homework

Exercise 6.3

Let $V \in L^{\infty}(\mathbb{R}^d, \mathbb{R})$ be bounded from below, i.e. $V(x) \geq -M$ for some $M \geq 0$ and a.e. $x \in \mathbb{R}^d$.

a) Prove that for every $f \in L^2(\mathbb{R}^d)$ and $\lambda > M$ there exists a unique $u \in H^1(\mathbb{R}^d)$ such that

$$\forall \varphi \in H^1(\mathbb{R}^d) : \langle \nabla u, \nabla \varphi \rangle + \langle (V + \lambda)u, \varphi \rangle = \langle f, \varphi \rangle,$$

that is, there is a unique weak solution to the equation

$$-\Delta u(x) + V(x)u(x) + \lambda u(x) = f(x).$$

b) Prove that the weak solution $u \in H^1(\mathbb{R}^d)$ obtained in part a) is an element of $H^2(\mathbb{R}^d)$.

Hand in on 06.03.2024 before the lecture, or electronically (the filename should start with your name) by 10:00 to jonas.lampart@u-bourgogne.fr.