Sheet 7

Exercise 7.1

Let $A \in B(\mathcal{H})$ and show that $\sigma(A)$ is compact.

Exercise 7.2

Let A, D(A) be densely defined. Show that if $\rho(A) \neq \emptyset$, then A is closed. *Hint:* Consider the set

$$\{(f,g) \in \mathcal{H} \times \mathcal{H} : (g,f) \in \mathscr{G}(A)\}.$$

Homework

Exercise 7.3 (Multiplication operators)

For a (possibly unbounded) measurable function $g : \mathbb{R}^d \to \mathbb{C}$ consider the linear map M_g in $L^2(\mathbb{R}^d)$ defined by

$$\mathcal{D}(M_g) := \left\{ f \in L^2(\mathbb{R}^d) \, \big| \, gf \in L^2(\mathbb{R}^d) \right\}$$
$$(M_g f)(x) := g(x)f(x) \, .$$

Prove:

- a) $\mathcal{D}(M_q)$ is dense in $L^2(\mathbb{R}^d)$.
- b) $(M_q)^* = M_{\overline{q}}.$
- c) M_g is closed.
- d) If $g \in L^{\infty}(\mathbb{R}^d)$ then M_g is bounded, and

$$||M_g|| = ||g||_{\infty} = \sup \Big\{ t : \big| \{x \in \mathbb{R}^d : |g(x)| \ge t \} \big| > 0 \Big\},\$$

where |V| denotes the Lebesgue measure of a measurable subset $V \subset \mathbb{R}^d$.

e) M_g is not bounded if $g \notin L^{\infty}(\mathbb{R}^d)$.

Hand in on 13.03.2024 before the lecture, or electronically (the filename should start with your name) by 10:00 to jonas.lampart@u-bourgogne.fr.