Aller au menu Aller au contenu Aller à la recherche
  • Français
  • English
  • Français
  • English

Plasmonics, Resonant nanophotonIcs and SubMicron optics (PRISM)

  • Physics of sub-lambda media
  • Nonlinear nanophotonics
  • Nanophotonic and plasmonic components
  • Nanophotonic and plasmonic circuitry
  • Integrated optical nanosources
  • Quantum plasmonics

Benoît CLUZEL

GROUP HEAD

benoit.cluzel@u-bourgogne.fr
Tél : 03 80 39 60 10

Gérard COLAS DES FRANCS

GROUP HEAD

gerard.colas-des-francs@u-bourgogne.fr
Tél : 03 80 39 90 67

  • Electro-plasmonic devices

We are developing nanoscale components based on a reversible transduction between electron and a photon using optical gap antennas. Our concept provides novel approaches where the light source and the detector can be integrated into a single metallic nanostructure. At the core of this family of device is an atomic-scale tunnel gap whereby optical rectification, inelastic tunneling, and hot carriers can reciprocally mix photons and electrons with ultrafast conversion dynamics.

  • Non-linear plasmonics

Plasmonic nanostructures exhibit various non-linear phenomena under near infrared pulsed illumination. Amongst the most important one are the emission of second harmonic and the presence of broadband nonlinear photoluminescence (N-PL) The spectral and time characteristics of the N-PL are dictated by the plasmonic landscape and the dynamics of hot carriers created in the metal  N-PL is thus a valuable observable to monitor how surface plasmons develop in various geometries as well as hot-electron properties in plasmonic nanoscale objects. We are implementing control strategies acting upon the plasmonic landscape and the surface density of the electrons in order to create active functional plasmonic-based devices such as universal Boolean gates.

  • Quantum plasmonics

We are interested in transposing the concepts of cavity quantum electrodynamics (cQED) to plasmonics and nanophotonics. This would ensure a better understanding of the light-matter interaction at the nanoscale and should permit to adapt optical microcavity devices (e.g. low threshold laser, coherent single photon source, superradiance, …) to nano-optics.

In collaboration with the Quantum Interactions and Control Dept. at ICB, we develop an effective non Hermitian Hamiltonian and derive Lindblad equations of the dynamics that exactly transposes cQED concepts into plasmonics. Particular attention is devoted to considering leakage and absorption losses and fully describe their effect on the emitter-plasmon coupling process. Simple and precise understanding of the energy exchange in full analogy with cQED treatment and a dressed atom picture is developed. Fano states and collective dissipator associated to radiation leakages are introduced. Classical (oscillating dipoles in complex environment) or semi-classical (two-level systems coupled to classical electromagnetic fields) models are systematically compared to full quantum approach facilitating the physical representation and the role of quantum corrections when available. Strong coupling regime and collective effects are considered with applications such as non classical light generation, bright and ultrafast optical nanosources, or nanomaterials engineering.

Members

  • J. Arocas (AI)
  • A. Bouhelier (DR CNRS)
  • B. Cluzel (MCF HDR)
  • A. Coillet
  • G. Colas des Francs (PR)
  • O. Demichel (CR CNRS)
  • E. Dujardin (DR CNRS)
  • F. De Fornel (DR CNRS)
  • K. Hammani (MCF)
  • L. Salomon (MCF)
  • M. Petit
  • C. Riffault (Tech gestion admin)
  • J.-C. Weeber (PR)
  • Y. Brûlé
  • M. Gourier
  • D. Sharma
  • Coming soon
kc_data:
a:8:{i:0;s:0:"";s:4:"mode";s:2:"kc";s:3:"css";s:0:"";s:9:"max_width";s:0:"";s:7:"classes";s:0:"";s:9:"thumbnail";s:0:"";s:9:"collapsed";s:0:"";s:9:"optimized";s:0:"";}
kc_raw_content:
[kc_row use_container="yes" _id="857749"][kc_column width="60.18%" _id="504935"][kc_column_text _id="970947"]

Plasmonics, Resonant nanophotonIcs and SubMicron optics (PRISM)

[/kc_column_text][kc_spacing height="20" _id="951837"][kc_column_text _id="115841"]
  • Physics of sub-lambda media
  • Nonlinear nanophotonics
  • Nanophotonic and plasmonic components
  • Nanophotonic and plasmonic circuitry
  • Integrated optical nanosources
  • Quantum plasmonics
[/kc_column_text][/kc_column][kc_column width="39.81%" _id="788211"][kc_column_text _id="889041"]

Benoît CLUZEL

GROUP HEAD

benoit.cluzel@u-bourgogne.fr
Tél : 03 80 39 60 10

[/kc_column_text][kc_spacing height="30px" _id="921658"][kc_column_text _id="182696"]

Gérard COLAS DES FRANCS

GROUP HEAD

gerard.colas-des-francs@u-bourgogne.fr
Tél : 03 80 39 90 67

[/kc_column_text][/kc_column][/kc_row][kc_row use_container="yes" _id="74076"][kc_column width="12/12" video_mute="no" _id="707869"][kc_spacing height="30px" _id="222880"][/kc_column][/kc_row][kc_row use_container="yes" _id="377469" cols_gap="{`kc-css`:{}}" force="__empty__" row_class="full bg-rs" animate="fadeInLeft||"][kc_column width="2%" _id="790602"][/kc_column][kc_column width="57%" _id="244044"][kc_spacing height="20" _id="308566"][kc_column_text _id="371239"]

  • Electro-plasmonic devices

We are developing nanoscale components based on a reversible transduction between electron and a photon using optical gap antennas. Our concept provides novel approaches where the light source and the detector can be integrated into a single metallic nanostructure. At the core of this family of device is an atomic-scale tunnel gap whereby optical rectification, inelastic tunneling, and hot carriers can reciprocally mix photons and electrons with ultrafast conversion dynamics.

  • Non-linear plasmonics

Plasmonic nanostructures exhibit various non-linear phenomena under near infrared pulsed illumination. Amongst the most important one are the emission of second harmonic and the presence of broadband nonlinear photoluminescence (N-PL) The spectral and time characteristics of the N-PL are dictated by the plasmonic landscape and the dynamics of hot carriers created in the metal  N-PL is thus a valuable observable to monitor how surface plasmons develop in various geometries as well as hot-electron properties in plasmonic nanoscale objects. We are implementing control strategies acting upon the plasmonic landscape and the surface density of the electrons in order to create active functional plasmonic-based devices such as universal Boolean gates.

  • Quantum plasmonics

We are interested in transposing the concepts of cavity quantum electrodynamics (cQED) to plasmonics and nanophotonics. This would ensure a better understanding of the light-matter interaction at the nanoscale and should permit to adapt optical microcavity devices (e.g. low threshold laser, coherent single photon source, superradiance, …) to nano-optics.

In collaboration with the Quantum Interactions and Control Dept. at ICB, we develop an effective non Hermitian Hamiltonian and derive Lindblad equations of the dynamics that exactly transposes cQED concepts into plasmonics. Particular attention is devoted to considering leakage and absorption losses and fully describe their effect on the emitter-plasmon coupling process. Simple and precise understanding of the energy exchange in full analogy with cQED treatment and a dressed atom picture is developed. Fano states and collective dissipator associated to radiation leakages are introduced. Classical (oscillating dipoles in complex environment) or semi-classical (two-level systems coupled to classical electromagnetic fields) models are systematically compared to full quantum approach facilitating the physical representation and the role of quantum corrections when available. Strong coupling regime and collective effects are considered with applications such as non classical light generation, bright and ultrafast optical nanosources, or nanomaterials engineering.

[/kc_column_text][kc_spacing height="20" _id="215975"][/kc_column][kc_column width="2%" _id="89270"][/kc_column][kc_column width="37%" _id="497913"][kc_spacing height="20" _id="267114"][kc_carousel_images img_size="full" items_number="3" tablet="2" mobile="1" speed="500" pagination="yes" auto_play="__empty__" alt_text="yes" _id="578908" images="11202,11225,11224,11223,11226,11201" onclick="lightbox" auto_height="yes"][kc_spacing height="20" _id="99308"][/kc_column][kc_column width="2%" _id="120700"][/kc_column][/kc_row][kc_row use_container="yes" _id="783754" cols_gap="{`kc-css`:{}}" force="__empty__" animate="fadeInRight||"][kc_column width="12/12" video_mute="no" _id="112742"][kc_spacing height="30px" _id="790164"][kc_column_text _id="692525"]

Members

[/kc_column_text][kc_spacing height="30px" _id="757389"][/kc_column][/kc_row][kc_row use_container="yes" _id="663708" cols_gap="{`kc-css`:{}}" force="__empty__" animate="fadeInRight||"][kc_column width="33.33%" _id="142089"][kc_column_text _id="518229" css_custom="{`kc-css`:{`any`:{`typography`:{`text-align|,p`:`center`}}}}"]

{slide= Permanents}

  • J. Arocas (AI)
  • A. Bouhelier (DR CNRS)
  • B. Cluzel (MCF HDR)
  • A. Coillet
  • G. Colas des Francs (PR)
  • O. Demichel (CR CNRS)
  • E. Dujardin (DR CNRS)
  • F. De Fornel (DR CNRS)
  • K. Hammani (MCF)
  • L. Salomon (MCF)
  • M. Petit
  • C. Riffault (Tech gestion admin)
  • J.-C. Weeber (PR)

{/slide}

[/kc_column_text][/kc_column][kc_column width="33.33%" _id="42913"][kc_column_text _id="555092" css_custom="{`kc-css`:{`any`:{`typography`:{`text-align|,p`:`center`}}}}"]

{slide= Post PhD}

  • Y. Brûlé
  • M. Gourier
  • D. Sharma

{/slide}

[/kc_column_text][/kc_column][kc_column width="33.33%" _id="922664"][kc_column_text _id="112800" css_custom="{`kc-css`:{`any`:{`typography`:{`text-align|,p`:`center`}}}}"]

{slide= PhD Students}

  • Coming soon

{/slide}

[/kc_column_text][/kc_column][/kc_row][kc_row use_container="yes" _id="629646" cols_gap="{`kc-css`:{}}" force="__empty__" animate="fadeInUp||"][kc_column width="12/12" video_mute="no" _id="22907"][kc_spacing height="30px" _id="654538"][kc_column_text _id="590715"]

Publications

[/kc_column_text][kc_spacing height="30px" _id="830143"][kc_accordion _id="828831" close_all="yes"][kc_accordion_tab title="Publications extracted from HAL" _id="31791"][kc_raw_code code="W2lmcmFtZSBzcmM9Imh0dHBzOi8vaGFsdG9vbHMuYXJjaGl2ZXMtb3V2ZXJ0ZXMuZnIvUHVibGljL2FmZmljaGVSZXF1ZXRlUHVibGkucGhwP2NvbGxlY3Rpb25fZXhwPUlDQiZzb2xyUXVlcnk9JTI4YXV0aElkSGFsX3MlM0FhbGV4YW5kcmUtYm91aGVsaWVyK09SK2dlcmFyZC1jb2xhcy1kZXMtZnJhbmNzK09SK29saXZpZXItZGVtaWNoZWwrT1IrZXJpay1kdWphcmRpbitPUitrYW1hbC1oYW1tYW5pJTI5K09SKyUyOGF1dGhGdWxsTmFtZV9zJTNBJTIySiUyMEFyb2NhcyUyMEdhcmNpYSUyMitPUislMjJKdWFuJTIwTWlndWVsJTIwQXJvY2FzJTIwR2FyY2lhJTIyK09SKyUyMkIlMjBDbHV6ZWwlMjIrT1IrJTIyQmVubyVDMyVBRXQlMjBDbHV6ZWwlMjIrT1IrJTIyQSUyMENvaWxsZXQlMjIrT1IrJTIyQXVyJUMzJUE5bGllbiUyMENvaWxsZXQlMjIrT1IrJTIyRiUyMERlJTIwRm9ybmVsJTIyK09SKyUyMkZyJUMzJUE5ZCVDMyVBOXJpcXVlJTIwRGUlMjBGb3JuZWwlMjIrT1IrJTIyTSUyMFBldGl0JTIyK09SKyUyMk1hcmwlQzMlQThuZSUyMFBldGl0JTIyK09SKyUyMkwlMjBTYWxvbW9uJTIyK09SKyUyMkxhdXJlbnQlMjBTYWxvbW9uJTIyK09SKyUyMkolMjBXZWViZXIlMjIrT1IrJTIySmVhbi1DbGF1ZGUlMjBXZWViZXIlMjIlMjkmTmJBZmZpY2hlPTEwMCZDQl9hdXRldXI9b3VpJkNCX3RpdHJlPW91aSZDQl9hcnRpY2xlPW91aSZsYW5ndWU9QW5nbGFpcyZ0cmlfZXhwPWFubmVlX3B1YmxpJnRyaV9leHAyPXR5cGRvYyZ0cmlfZXhwMz1kYXRlX3B1YmxpJm9yZHJlX2FmZj1UQSZGZW49QWZmJmNzcz0uLi9jc3MvVmlzdVJ1YnJpcXVlRW5jYWRyZS5jc3MiDQp3aWR0aD0iMTAwJSIgaGVpZ2h0PSI1MDAiXQ==" _id="401842"][/kc_accordion_tab][/kc_accordion][/kc_column][/kc_row][kc_row use_container="yes" _id="558855" cols_gap="{`kc-css`:{}}" force="__empty__" animate="fadeInUp||" disabled="on"][kc_column width="25%" _id="941132"][kc_column_text _id="43489"]

{slide=2015}

1) S. Viarbistkaya, O. Demichel, B. Cluzel, G. Colas des Francs & A. Bouhelier, Delocalization of nonlinear optical responses in plasmonic nanoantennas, Physical Review Letters 115, 197401 (2015)

2) R. Laberdesque, O. Gauthier-Lafaye, H. Camon, A. Monmayrant, M. Petit, O. Demichel & B. Cluzel, High order modes in Cavity Resonator Intergrated Guided-mode Resonance Filters (CRIGFS), J. Opt. Soc. Am. A 11, 1973 (2015)

3) C. Pin, B. Cluzel, C. Renaut, E. Picard, D. Peyrade, E. Hadji & F. de Fornel, Mie and Rayleigh trapping of fluorescent microprobes in the near-field of silicon nanocavity, ACS Photonics 2, 1410 (2015)

{/slide}

[/kc_column_text][kc_column_text _id="746108"]

{slide=2011}

1) L. Lalouat, B. Cluzel, C. Dumas, L. Salomon et F. de Fornel, Imaging photoexcited optical modes in photonic-crystal cavities with a near-field probe, Physical Review B 83, 115326 (2011)

2) J. Dellinger, D. Bernier, B. Cluzel, X. Le Roux, A. Lupu, F. de Fornel et E. Cassan, Near field direct experimental observation of beam steering in a photonic crystal superprism, Optics Letters 36, 1074 (2011)

3) B. Cluzel, L. Lalouat, P. Velha, E. Picard, E. Hadji, D. Peyrade, P. Lalanne et F. de Fornel, Extraordinary tuning of a nanocavity by a near-field probe, Photonics and Nanostructures 9, 269 (2011)

4) D. Brissinger, A. L. Lereu, L. Salomon, T. Charvolin, B. Cluzel, C. Dumas, A. Passian et F. de Fornel, Discontinuity induced angular distribution of photon plasmon coupling, Optics Express 19, 17750 (2011)

5) B. Cluzel, K. Foubert, L. Lalouat, J. Dellinger, D. Peyrade, E. Picard, E. Hadji e t F. de Fornel, Addressable sub-wavelength grids of confined light in a multi-slotted nanoresonator, Applied Physics Letters 98, 081101 (2011)– article sélectionné en couverture

{/slide}

[/kc_column_text][/kc_column][kc_column width="25%" _id="389602"][kc_column_text _id="965277"]

{slide=2014}

1) C. Pin, B. Cluzel, C. Renaut, D. Peyrade, E. Picard, E. Hadji & F. de Fornel, Optofluidic taming of a colloidal dimer with a silicon nanocavity, Applied Phyics Letters 108, 171108 (2014)

2) O. Demichel, M. Petit, G. Colas des Francs, A. Bouhelier, E. Hertz, F. Billard, F. de Fornel & B. Cluzel, Selective excitation of bright and dark plasmonic resonances of single gold nanorods, Optics Express 22, 15088 (2014)

{/slide}

[/kc_column_text][kc_column_text _id="347882"]

{slide=2010}

1) G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Mélique, O. Vanbésien, D. Lippens, C. Dumas, B. Cluzel et F. de Fornel, Interface engineering for improved light transmittance through photonic crystal flat lenses, Applied Physics Letters 97, 071119 (2010)

2) J. Marquès-Hueso, L. Sanchis, B. Cluzel, F. de Fornel et J. P. Martinez-Pastor, Genetic algorithm designed silicon integrated photonic lens operating at 1550nm, Applied Physics Letters 97, 071115 (2010)

3) A.Coillet, B. Cluzel, G. Vienne, P. Grelu et F de Fornel, Near-field characterization of glass microfibers on a low-index substrate, Applied Physics B 101, 291-295 (2010)

{/slide}

[/kc_column_text][/kc_column][kc_column width="25%" _id="264483"][kc_column_text _id="491870"]

{slide=2013}

1) E. Cassan, J. Dellinger, X. Le Roux, K. Van Do, F. de Fornel & B. Cluzel, Homogenization limit in a graded photonic crystal, Physical Review B 88, 125138 (2013)

2) S. Kaya, J.-C. Weeber, F. Zacharatos, K. Hassan, T. Bernardin, B. Cluzel, J. Fatome & C. Finot, Photo-thermal modulation of surface plasmon polariton propagation at telecommunication wavelengths, Optics Express 21, 22269 (2013)

3) M. Hofman, G. Scherrer, M. Kadic, X. Mélique, W. Smigaj, B. Cluzel, S. Guenneau, D. Lippens, F. de Fornel, B. Gralak & O. Vanbésien, Dispersion Engineering for Multifunctional Photonic Crystal Based Nanophotonic Devices at Infrared Wavelengths, Journal of Nanomedecine & Nanotechnology 4, 1000185 (2013)

4) G. Scherrer, M. Hofman, W. Smigaj, M. Kadic, T.-M Chang, X. Mélique, D. Lippens, O. Vanbésien, B. Cluzel, F. de Fornel, S. Guenneau & B. Gralak, Photonic crystal carpet: Manipulating wave fronts in the near-field at 1.55µm, Physical Review B 88, 115110 (2013)

5) C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, F. de Fornel, On Chip Shapeable Optical Tweezers, Nature Scientific Reports 3, 2290 (2013)

6) P. Genevet, J. Dellinger, R. Blanchard, A. She, M. Petit, B. Cluzel, M.A. Kats, F. de Fornel & F. Capasso, Generation of two-dimensional plasmonic bottle beams, Optics Express 21, 10295 (2013)

7) J. Marques-Hueso, L. Sanchis, B. Cluzel, F. de Fornel & J.P. Martínez-Pastor, Properties of silicon integrated photonic lenses: bandwidth, chromatic aberration, and polarization dependence, Optical Engineering 52 (9), 091710(2013)

8) E. Cassan, K. Van Do, J. Dellinger, X. Le Roux, F. de Fornel & B. Cluzel, Polarization beam splitting using a birefringent graded photonic crystal, Optics Letters 38, 459 (2013)

{/slide}

[/kc_column_text][kc_column_text _id="447719"]

{slide=2009}

1) D. Brissinger, B. Cluzel, A. Coillet, C. Dumas, P. Grelu et F. de Fornel, Near-field control of an optical bistability in a nanocavity, Physical Review B 80, 033103 (2009)

2) K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, F. de Fornel et E. Hadji, An air-slotted nanoresonator relying on coupled high-Q small-V Fabry Perot nanocavities, Applied Physics Letters 94, 251111 (2009)

{/slide}

[/kc_column_text][/kc_column][kc_column width="25%" _id="203049"][kc_column_text _id="801122"]

{slide=2012}

1) J. Girard, G. Scherrer, A. Cattoni, E. Le Moal, A. Talneau, B. Cluzel, F. de Fornel, and A. Sentenac, Far-field optical control of a moveable subdiffraction light grid, Physical Review Letters 109, 187404 (2012)

2) J. Dellinger, K. Van Do, X. Le Roux, F. de Fornel, E. Cassan, B. Cluzel, Hyperspectral optical near-field imaging: looking graded photonic crystals and photonic metamaterials in color, Applied Physics Letters 101, 141108 (2012)

3) Jiao Lin, Jean Dellinger, Patrice Genevet, Benoit Cluzel, Frederique de Fornel, and Federico Capasso, Cosine-Gauss plasmon beam: A localized long-range nondiffracting surface wave, Physical Review Letters 109, 093904 (2012), Article cité (Rubrique News and Views) dans Nature Photonics, vol6, 720, Novembre 2012

4) K. Foubert, B. Cluzel, L. Lalouat, E. Picard, D. Peyrade, F. de Fornel, and Emmanuel Hadji, Influence of dimensional fluctuations on the optical coupling between nanobeam twin cavities, Physical Review B 85, 235454 (2012)

5) C. Renaut, J. Dellinger, B. Cluzel, T. Honegger, D. Peyrade, E. Picard; F. de Fornel et E. Hadji, Assembly of microparticles by optical trapping with a photonic crystal nanocavity, Applied Physics Letters 100, 101103 (2012)

{/slide}

[/kc_column_text][kc_column_text _id="243572"]

{slide=2008}

1) K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel et E. Hadji, Near-field modal microscopy of the subwavelength confinement in multi-mode silicon slot waveguides, Applied Physics Letters 93, 251103 (2008)

2) L. Lalouat, B. Cluzel, L. Salomon, C. Dumas, C. Seassal, N. Louvion, S. Callard et F. de Fornel, Real space observation of two-dimensional Bloch wave interferences in a negative index photonic crystal cavity, Physical Review B, 78, 235304 (2008)

3) N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, O. Vanbésien, Optical near-field microscopy of light focusing through a photonic crystal flat lens, Physical Review Letters 101, 073901 (2008) - Article cité (Rubrique Highlights) dans Nature Photonics, vol2, 591, octobre 2008

4) L. Lalouat, B. Cluzel, F. de Fornel, P. Velha, P. Lalanne, D. Peyrade, E. Picard T. Charvolin, E. Hadji, Sub-wavelength imaging of light confinement in high Q/ small V photonic crystal nanocavity, Applied Physics Letters 98, 111111 (2008), -Article cité (Rubrique Highlights) dans Nature Photonics, vol2, 265, mai 2008

5) B. Cluzel, L. Lalouat, P. Vehla, E.Picard, D. Peyrade, J.C. Rodier, T. Charvolin, P. Lalanne, E. Hadji, F. de Fornel, Nano-manipulation of confined electromagnetic fields with a near-field probe, CRAS Physique 9, 24 (2008)

6) B. Cluzel, L. Lalouat, P. Vehla, E.Picard, D. Peyrade, J.C. Rodier, T. Charvolin, P. Lalanne, F. de Fornel, E. Hadji, A near-field actuated optical nanocavity, Optics Express 16, 279 (2008)

{/slide}

[/kc_column_text][/kc_column][/kc_row]

Log In

Create an account