Cette adresse e-mail est protégée contre les robots spammeurs. Vous devez activer le JavaScript pour la visualiser. 
 Bureau: D112


Département Intéraction et Contrôle Quantique
Equipe Dynamique Quantique et Non-Linéaire



J.L.: A nonrelativistic quantum field theory with point interactions in three dimensions. arxiv:1804.08295


Journal Articles

J.L., J. Schmidt: On Nelson-type Hamiltonians and abstract boundary conditions. Communications in Mathematical Physics (accepted), 2018; arxiv:1803.00872

S. Haag, J.L., and S.Teufel: Quantum waveguides with magnetic fields. Reviews in Mathematical Physics (accepted), 2018; arXiv:1710.0151

S. Haag, J. L.: The adiabatic limit of the connection Laplacian. The Journal of Geometric Analysis (online), 2018; arXiv:1705.09801

J. L., J. Schmidt, S. Teufel, R. Tumulka, Particle Creation at a Point Source by Means of Interior-Boundary Conditions. Mathematical Physics Analysis and Geometry 21(2), 2018; arXiv:1703.04476

S. Fournais, J.L., M. Lewin, T. Østergaard Sørensen: Coulomb potentials and Taylor expansions in Time-Dependent Density Functional Theory. Rhysical Review A 93(6), 2016; arxiv:1603.02219

J.L., M. Lewin: Semi-classical Dirac vacuum polarisation in a scalar field. Annales Henri Poincaré 17(8): 1937-1954, 2016; arxiv:1506.00895

J.L., M. Lewin: A many-body RAGE theorem. Communications in Mathematical Physics 340(3): 1171-1186, 2015; arXiv:1503.00496

J.L.: Convergence of nodal sets in the adiabatic limit. Annals of Global Analysis and Geometry 47(2): 147-166, 2015; arXiv:1405.1903

S. Haag, J.L., S. Teufel: Generalised Quantum Waveguides. Annales Henri Poincaré 16(11): 2535-2568, 2015; arXiv:1402.1067

J.L., S. Teufel: The adiabatic limit of Schrödinger operators on fibre bundles. Mathematische Annalen 367: 1647, 2017; arXiv:1402.0382


Conference Proceedings

J.L., A polaron model with point interactions in three dimensions. To appear in: G. Dell'Antonio, A. Michelangeli (Eds.), Mathematical Challenges in Zero Range Physics, Springer, 2018. PDF

J.L., Can quantum dynamics be described by the density alone? Oberwolfach Reports 13(3): 2496, 2016. PDF

J.L., S. Teufel: The adiabatic limit of the Laplacian on thin fibre bundles. In: D. Grieser, S. Teufel, A. Vasy (Eds.): Microlocal Methods in Mathematical Physics and Global Analysis, Birkhäuser, 2013. PDF

J.L., J. Wachsmuth, S. Teufel: Effective Hamiltonians for thin Dirichlet tubes with varying cross-section. In: P. Exner (Ed.): Mathematical Results in Quantum Physics: Proceedings of the QMath11 Conference, World Scientific, 2011; arXiv:1011.3645


PhD Thesis: The adiabatic limit of Schrödinger operators on fibre bundles, Universität Tübingen, 2014

Diploma Thesis: The semi-classical Egorov theorem on Riemannian manifolds, Universität Tübingen, 2009


Since 2016: CNRS researcher at ICB

2015-2016: Postdoc PSL at the university of Paris-Dauphine

2014-2015: Postdoc with Mathieu Lewin at Paris-Dauphine and Cergy-Pontoise

2010-2013: PhD with Stefan Teufel at the university of Tübingen